Spinal arteriovenous malformation associated with spinal metameric syndrome: a treatable cause of long-term paraplegia?

Case report

Italo Linfante, M.D.,1,4 **Francesca Tari Capone, M.D.,**2 **Guilherme Dabus, M.D.,**1,4 **Sergio Gonzalez-Arias, M.D., Ph.D.,**3,4 **Patricio E. Lau, B.S.,**4 and **Edgar A. Samaniego, M.D., M.S.**1

1Department of Interventional Neuroradiology, Baptist Cardiac and Vascular Institute, Miami, Florida; 2Department of Neurosciences and Mental Health, II Faculty of Medicine, “La Sapienza” University of Rome, Italy; 3Department of Neurological Surgery, Baptist Hospital Neuroscience Center; and 4Herbert Wertheim College of Medicine, Florida International University, Miami, Florida

Cutaneomeningospinal angiomatosis, or Cobb syndrome, is a rare metameric developmental disorder presenting as an extradural-intradural vascular malformation that involves bone, muscle, skin, spinal cord, and nerve roots. A 14-year-old girl with a red nevus involving the T6–9 dermatomes on the left side of her back presented with a 5-year history of bowel and bladder incontinence, paraplegia, and lower-extremity sensory loss. Magnetic resonance imaging demonstrated a hemangioma in the T-8 and T-9 vertebral bodies and a spinal cord AVM nidus extending from T-6 to T-9. The AVM was successfully embolized and the patient regained lower-extremity strength, ambulation, and normal sphincter functions after 5 years of having been wheelchair bound.

The authors report the restoration of ambulation after endovascular embolization of a large spinal AVM in a patient with long-standing paraplegia due to Cobb syndrome. (http://thejns.org/doi/abs/10.3171/2011.12.SPINE11636)

Key Words • angiomatosis • Cobb syndrome • embolization • myelopathy • Onyx • spinal angiography • spinal arteriovenous malformation

Abbreviation used in this paper: AVM = arteriovenous malformation.

Cutaneomeningospinal angiomatosis, also known as Cobb syndrome, is a rare, noninherited disorder characterized by a spinal AVM and a vascular skin lesion affecting the corresponding dermatome. Spinal involvement may include the vertebral bodies, dura mater, spinal cord, and nerve roots. Adult and young patients typically present with sudden onset of radicular pain in the lower extremities and associated numbness. Less commonly, sudden onset of weakness or rectal and bladder dysfunction is the presenting symptom. The clinical course may also progress over several years to paraplegia and sphincter dysfunction. Rupture of the AVM may result in a potentially fatal subarachnoid hemorrhage and/or hematomyelia.

Current treatment options aim for obliteration of the AVM, usually by a combination of endovascular embolization, resection, and in selected cases, radiotherapy. The endovascular approach has been successfully used in spinal vascular malformations mostly as preoperative embolization. An angiographically documented cure resulting in reversal of paraplegia after endovascular embolization alone has been described mostly in Type I spinal dural fistulas. We report the case of a 14-year-old, wheelchair-bound girl with paraplegia and bowel and bladder incontinence due to a large spinal AVM who, after endovascular embolization, regained lower-extremity strength and sphincter control.
Endovascular treatment of Cobb syndrome

Case Report

History. When the patient was 9 years of age, she developed progressive numbness and tingling in her right leg. Over the next year, lower-extremity paraplegia, hypesthesia, dysesthesia, constipation, and a neurogenic bladder developed. The patient underwent evaluation at an outside hospital where thoracic MR imaging revealed a large spinal vascular malformation. At the time of the diagnosis, the treating physicians did not offer surgical or endovascular treatments. The patient was wheelchair bound from the age of 10 to 14 years, when she was referred to our institution. In addition to the paraplegia, the patient reported that during the last year she had developed progressive upper-extremity weakness and shortness of breath upon mild exertion.

Examination. At the time of the referral to our institution, physical examination revealed a birthmark characterized by a pigmented nevus in the left T6–9 dermatomes of her torso measuring approximately 28 × 12 cm. The nevus exhibited a thrill on palpation and was warm. Neurologically, the patient had Grade 4/5 bilateral deltoid and biceps weakness with brisk deep tendon reflexes in the upper extremities. She had spastic lower-extremity paraplegia (Grade 0/5 in all muscle groups), sustained clonus of the patellar and ankle reflexes, and a bilateral Babinski sign. On sensory examination, she had hypesthesia to light touch and pinprick up to the dermatomal level of T-7. She had intermittent bladder incontinence and episodes of constipation. Her Aminoff-Logue disability scale score for gait and micturition was 7 (scale range 1–8, where 8 signifies an inability to stand and complete incontinence).

Thoracic MR imaging revealed numerous intramedullary serpiginous flow voids from T-6 to T-9, suggestive of a spinal cord AVM. Perimedullary flow voids could be traced from T-4 to T-12 representing possible enlarged perimedullary veins. Hyperintense T1-weighted lesions within the T-8 and T-9 vertebral bodies were suggestive of hemangioma (Fig. 1A).

Spinal angiography revealed that the AVM nidus extended from T-5 to T-8 (Figs. 2–5). The arteria radicularis magna arose from the left T-9 intercostal artery (Fig. 3A) and provided arterial inflow to the AVM nidus. Angiography revealed markedly engorged perimedullary and dural venous plexus veins throughout the length of the thoracic and lumbar spinal cord. The ayzygos vein and inferior vena cava were also visualized on late-phase angiograms from selective catheterization of the left T-6 intercostal artery that supplied the main radiculomedullary feeder of the AVM (Fig. 2).

Endovascular Embolization. To reach the AVM nidus, superselective catheterization of the radiculomedullary arteries arising from the right T-8, left T-9, and right T-7 arteries was performed using Marathon and UltraFlow microcatheters (ev3 Inc.). Once the microcatheter was stably positioned into the AVM nidus, Onyx liquid embolic agent (ev3) was injected. Because of the large size of the AVM nidus, we opted for a staged approach. Therefore, the superior section of the nidus (Fig. 5) was embolized 2 months later via the left T-6 intercostal artery. Final selective spinal angiography 2 months after the last embolization demonstrated an angiographic cure at each level with no residual contrast opacification of the nidus.

Posttreatment. Postembolization spinal MR imaging showed only few perimedullary flow voids and the presence of intramedullary Onyx-induced signal artifact (Fig. 1B). Neurologically, after the first embolization, the patient started to regain strength of her proximal leg muscles (Grade 3/5). She then progressively improved to the point of being able to stand unassisted and ambulate with a walker. She also regained complete bladder and bowel control, corresponding to an Aminoff-Logue Scale score of 4. At 10 months after the intervention, the patient gained even more lower-extremity strength and was able to stand up more firmly. Unfortunately, because the patient currently lives in a remote village in Bolivia, we were not able to obtain an angiographic follow-up.

Discussion

To our knowledge, this is the first report of a reversal of paraplegia after endovascular embolization without resection of a large intramedullary AVM in a patient with Cobb syndrome.

In 1915 Stanley Cobb described 1 case of “hemangiomata” of the spine associated with a skin nevi. The diagno-
sis was made after laminectomy of the thoracic spine and dural exposure with visualization of tense bulging vessels in the canal. Several reports with inaccurate descriptions of the spinal vascular lesion have followed. This lack of consensus was most likely due to the absence at that time of the modern angiographic and imaging capabilities currently used to accurately visualize the vascular lesion, its angioarchitecture, and relationship to the spinal cord. Only in 1972 did Kissel and Dureux propose a diagnostic criteria for Cobb syndrome that included a skin nevus in the same segment of the spinal angioma, sometimes accompanied by visceral angiomatosis. More recently in 2006, Kim and colleagues classified Cobb syndrome as an extradural-intradural AVM, which involved bone, muscle, skin, spinal cord, and nerve roots in the same dermatome distribution.

With these limitations, the number of documented cases of Cobb syndrome in the literature is approximately 45.8,9,25,32 With regard to neurological symptoms, cord ischemia due to steal syndrome and cord compression due to venous hypertension are the proposed mechanisms that would explain the myelopathy observed in unruptured spinal malformations in general, and in the large AVMs often described in Cobb syndrome.4

Treatment modalities reported in the literature include surgical resection, endovascular embolization, and radiation therapy. In particular, surgical intervention with or without radiation therapy was performed in 20 (45%) of 45 cases9,25,32 embolization with or without medical therapy in 9 (20%) (Table 1),11,14,15,17–19,23,26,31 combined surgical and endovascular approaches in 10 (22%),3,16,24,27,29,30 and conser-

Fig. 2. A: Superselective left T-8 radiculomedullary angiogram demonstrating the AVM nidus. Vascular involvement of soft tissues surrounding the AVM in a metameric distribution (arrowhead, A). B: Microcatheter injection proximal to the AVM nidus. C: Postembolization angiogram demonstrating no residual contrast opacification of the AVM nidus.

Fig. 3. A: Hyperplastic arteria radicularis magna (arrowhead) arising from the left T-9 intercostal artery and providing arterial inflow to the AVM nidus. B: Microcatheter injection proximal to the AVM nidus through the arteria radicularis magna. C: Postembolization angiogram demonstrating the Onyx cast (arrow) and no residual contrast opacification of the AVM nidus.
Endovascular treatment of Cobb syndrome

Fig. 4. A: Superselective spinal angiogram of the right T-7 radiculomedullary branch demonstrating the AVM nidus. B: Microcatheter injection proximal to the AVM nidus. C: Postembolization angiogram demonstrating the Onyx cast (arrow) and no residual nidus.

Fig. 5. Two months after the first embolization, the remaining portion of the AVM nidus arising from the left T-6 radiculomedullary artery was selected. A and B: Angiograms from the guide catheter and the microcatheter demonstrating residual AVM nidus. C: Postembolization angiogram demonstrating an Onyx cast (arrow) and no residual AVM nidus.

Conservative management with medical treatment only in 6 cases (13%). Martin and coworkers described a 15-year-old boy with an intramedullary AVM who presented with lower-extremity spasticity. He underwent endovascular embolization of 2 arterial feeders and resection of the residual AVM. He had an excellent neurological outcome. However, he developed delayed kyphosis because the AVM involved multiple vertebral bodies. It was not reported if the patient regained movement of his lower extremities. Spetzler and collaborators reported on a patient with a Type III AVM that was completely obliterated using a combination of pre- and intraoperative embolization with staged resection. The patient had mild upper-extremity weakness before the intervention; 6 weeks later she had recovered full strength and returned to her normal activities. Touho and associates also described improvement in a patient who was paraparetic for 14 years and not able to walk without assistance. After intraoperative embolization and excision of a Type III AVM, the patient was able to stand and walk short distances with the aid of parallel bars.

The endovascular approach has been used successfully in spinal vascular malformations mostly as preoperative embolization. An angiographically documented cure after endovascular embolization alone has been described mostly in cases of Type I spinal dural fistulas. With regard to spinal AVMs, Corkill and collaborators described an overall improvement in neurological status in 14 of 17 patients after endovascular Onyx-based embolization. However, only 1 patient included in their series had severe lower-extremity motor impairment, which did not improve after complete obliteration of the AVM. Da Costa and colleagues reported on 47 spinal cord AVMs treated endovascularly. Excellent outcome (improvement in neurological status or AVM obliteration) was achieved in 49% of cases, but none of the patients with a fixed neurological deficit returned to their baseline neurological status.

In the case described in this report, we were able to achieve an excellent angiographic result using embolization alone. Moreover, the patient had a remarkable clinical recovery. Her neurological improvement suggests that her symptoms were most likely due to venous hypertension, similarly to what has been reported after endovascular embolization of patients with paraplegia secondary to spinal dural arteriovenous fistulas.
also occur in spinal A VMs. What has been reported in T ype I spinal dural fistulas, spinal A VMs should be considered both as a preoperative markable clinical improvement of severe myelopathy may need in Bolivia.

We suggest that endovascular embolization of large spinal AVMs should be considered both as a preoperative treatment and possibly as a definite treatment. Similar to what has been reported in Type I spinal dural fistulas, remarkable clinical improvement of severe myelopathy may also occur in spinal AVMs.

Conclusions

Disclosure

Dr. Linfante is a consultant for Codman Neurovascular and Concentric Medical. Dr. Dabus is a consultant for Codman Neurovascular.

Acknowledgments

The authors acknowledge Beverly Smith and Project Rafa; Drs. Palacio Mercado, Tonia Seng, and Sonia Seng; and Mr. Enoel Suárez for their exceptional missionary work and care of people in need in Bolivia.

References

15. Maramattom BV, Cohen-Gadol AA, Wijdicks EF, Callmes D: TABLE 1: Endovascular treatments of Cobb syndrome reported in the literature*

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>Age at Tx (yrs)</th>
<th>Symptoms</th>
<th>Level</th>
<th>Lesion</th>
<th>Procedure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyatake et al., 1990</td>
<td>15</td>
<td>paraparesis</td>
<td>T10–L1</td>
<td>fistula</td>
<td>ethylene vinyl alcohol & calibrated-leak balloon</td>
<td>increased pain & disuria</td>
</tr>
<tr>
<td>Krolak-Salmon et al., 1999</td>
<td>20</td>
<td>sharp back pain & paraplegia w/ SAH</td>
<td>C6–T11</td>
<td>perimedullary AVM</td>
<td>embolization</td>
<td>normal gait</td>
</tr>
<tr>
<td>Soeda et al., 2003</td>
<td>0.4</td>
<td>paraparesis</td>
<td>T8–L3</td>
<td>spinal & paravertebral angioma</td>
<td>embolization w/ NBCA</td>
<td>improved strength</td>
</tr>
<tr>
<td>Maramattom et al., 2005</td>
<td>17</td>
<td>neck pain, quadriplegia, areflexia, & C-4 sensory loss</td>
<td>C5–7</td>
<td>AVM</td>
<td>coiling of venous outflow</td>
<td>mild improvement of strength</td>
</tr>
<tr>
<td>Matullo et al., 2007</td>
<td>11</td>
<td>back pain, bladder & bowel dysfunction, paraplegia</td>
<td>T8–S1</td>
<td>AVM & leaking aneurysm</td>
<td>embolization</td>
<td>improved strength, but wheelchair dependent</td>
</tr>
<tr>
<td>Wetter et al., 2008</td>
<td>17</td>
<td>sudden quadriplegia</td>
<td>C5–7</td>
<td>AVM</td>
<td>coil embolization</td>
<td>moderate improvement</td>
</tr>
<tr>
<td>Johnson & Petrie, 2009</td>
<td>34</td>
<td>progressive myelopathy</td>
<td>T9–11</td>
<td>AVM</td>
<td>coil embolization of aneurysm</td>
<td>lost to follow-up</td>
</tr>
<tr>
<td>Palanca Arias et al., 2010</td>
<td>13</td>
<td>rt hemiparesis & hypesthesia</td>
<td>C6–7</td>
<td>AVM</td>
<td>embolization</td>
<td>no improvement</td>
</tr>
<tr>
<td>BCVI</td>
<td>14</td>
<td>paraplegia, bladder & bowel dysfunction</td>
<td>T6–9</td>
<td>AVM</td>
<td>Onyx embolization</td>
<td>significant improvement</td>
</tr>
</tbody>
</table>

* BCVI = Baptist Cardiac and Vascular Institute; NBCA = N-butyl cyanoacrylate; SAH = subarachnoid hemorrhage; Tx = treatment.
Endovascular treatment of Cobb syndrome

Manuscript submitted August 9, 2011. Accepted December 5, 2011. Please include this information when citing this paper: published online January 6, 2012, DOI: 10.3171/2011.12.SPINE11636.

Address correspondence to: Italo Linfante, M.D., Interventional Neuroradiology, Endovascular Neurosurgery, Baptist Cardiac and Vascular Institute, 8900 North Kendall Drive, Miami, Florida 33176. email: italol@baptisthealth.net.