Cryoglobulinemia

Paul Monach, MD, PhD
Boston University
July 12, 2013
What are Cryoglobulins?

• Complexes of blood proteins that fall out of solution in the cold
 – This is a laboratory finding that does not usually recapitulated what is going on in the body!
 – Types I, II, and III
• Chemically, they are large immune complexes
 – Antibodies bound each other and usually also to their target “antigens”
Type I Cryoglobulins

- 10% of cases
- Always associated with a cancerous or pre-cancerous disorder of antibody-producing B cells
 - Waldenstrom’s, multiple myeloma, MGUS
- Monoclonal antibodies alone associate with each other and fall out of solution
 - No target antigen is needed
- Amount of cryoglobulin is very high, often > 10%
- Clinical syndrome, caused more by physical blockage of small vessels than by vasculitis
 - Severe skin disease especially in cold-exposed areas
 - Nerves, joints, kidneys also commonly affected
Type II and Type III Cryoglobulins

• 90% of cases = “mixed cryoglobulinemia”
 – 60% type II (monoclonal “rheumatoid factor”)
 – 30% type III (polyclonal “rheumatoid factor”)
 – No importance of II vs. III clinically!

• Causes
 – **Hepatitis C virus (HCV)** in 80% of cases
 – Rheumatic disease in 6% (Sjogren’s > lupus, RA)
 – Lymphoma in 4%
 – Unknown in 10% = “essential mixed cryoglobulinemia”

• Clinical syndrome, more from **vasculitis** than from blockage of vessels
Cryoglobulinemia, Henoch-Schonlein Purpura, and Skin-limited Vasculitis
Mixed Cryoglobulinemia - Clinical

• **Highly variable in severity**
 – Classic syndrome is “only” purpura, joint pain, and fatigue

• Skin (most common)
 – Purpura, ulcers, gangrene of fingers/toes

• Joints (common)
 – Often without swelling; does not cause permanent damage

• Nerves (common)
 – Often debilitating

• Kidneys (relatively common)
 – Variable severity, can be bad enough to lead to dialysis

• Heart, Lungs, Brain, Intestines
 – All uncommon (< 10%), but extremely dangerous
Diagnosis

• Cornerstone is a positive cryoglobulin test
• However...
 – It’s easy to do the cryo test improperly
 – 40% of patients with hepatitis C will have cryos at a low level, but only 1% have cryo vasculitis
 – Rheumatoid factor and complement (C3, C4) tests are more accurate but don’t prove vasculitis either
• Biopsy to prove vasculitis, or the characteristic pattern of kidney damage (MPGN) is often needed
 – Often the clinical picture and positive cryo test (or HCV and RF and low C4) are good enough
Treatment

- Type I: chemotherapy appropriate for the underlying B cell disorder
- Types II/III = mixed cryo
 - HCV-positive
 - Anti-viral therapy
 - If disease is severe, also rituximab
 - Most severe disease, often plasma exchange first
 - Role / dosing of prednisone is controversial
 - HCV-negative
 - Probably rituximab is best, but no studies to prove that
 - Role / dosing of prednisone is controversial
Prognosis

• If HCV is eradicated, that is usually curative
• If non-HCV or unable to eradicate HCV, usually recurs but can be treated the same way
• If associated with a B cell malignancy, depends on how well that cancer can be treated
• Involvement of brain, heart, or GI tract is life-threatening but uncommon
 – Neuropathy – frequently disabling
 – Severe kidney involvement – can lead to dialysis
• In mixed cryo, infection is the main cause of death
 – Are patients with cryoglobulinemia at particularly high risk?
 – Are we using too much prednisone?
Thanks: Colleagues and Support

- BU Vasculitis Center
 - Naomi Amudala, NP
 - Alicia Rodriguez-Pla, MD (fellow in training)
 - Tuhina Neogi, MD
 - Jackie Chapski

- Vasculitis Clinical Research Consortium (VCRC)
 - Simon Carette (Toronto)
 - David Cuthbertson (USF)
 - Peter Grayson (NIH)
 - Gary Hoffman (CCF)
 - Nader Khalidi (Toronto)
 - Curry Koening (Utah)
 - Jeffrey Krischer (USF)
 - Carol Langford (CCF)
 - Peter Merkel (Penn)
 - Philip Seo (JHU)
 - Ulrich Specks (Mayo)
 - Steven Ytterberg (Mayo)
 - Vasculitis Foundation and other Patient Advocacy Groups