Anesthetic-Induced Anaphylaxis

Carol L. Norred, CRNA, PhD

The purpose of this course is to update nurse anesthetists about anesthetic-induced anaphylaxis. This course discusses the pathophysiologic process of anaphylaxis with descriptions of the allergic immune response and the mediators and mechanisms of mast cell activation. The preoperative identification of patients at high risk and the assessment of potential anesthetic triggers of a hypersensitivity and/or allergic reaction are prudent strategies to minimize the risk of anaphylaxis. Other practices recommended for clinicians include suggestions for anesthetic management to decrease threat of an allergic response in high-risk patients. Furthermore, the identification of the severity grade of hypersensitivity reactions and the appropriate treatment of perioperative anaphylaxis is discussed. In addition, postoperative and follow-up interventions, including testing for patients who have had an anesthetic-induced hypersensitivity reaction, are considered.

Keywords: Anaphylaxis, anesthesia, hypersensitivity reaction, IgE.

Objectives
After completion of this course, the reader should be able to:
1. Recognize the pathophysiologic process of anaphylaxis, its mediators and mechanisms, and the primary cells involved, including mast cells and basophils.
2. Describe the symptoms and determine the severity of anesthetic-induced anaphylaxis.
3. Identify preoperative surgical patients who are at a higher risk for anaphylaxis during anesthesia.
4. Identify anesthetic drugs that may trigger anaphylactic reactions, and examine strategies to prevent perioperative anaphylaxis.
5. Formulate an appropriate treatment protocol for anesthetic-induced anaphylaxis, and suggest the diagnostic tests essential for the evaluation of drug hypersensitivity.

Introduction
Anaphylaxis is a severe allergic reaction that can be life threatening with rapid onset and can occur with or without exposure to a known allergen. The incidence during anesthesia ranges from 1 in 4,000 to 1 in 25,000 patients. If not promptly diagnosed and treated, a sudden, severe, or prolonged reaction can lead to cardiovascular collapse resulting in perioperative death. Anaphylaxis is fatal in 3% to 10% of surgical cases. Hypersensitivity to anesthetic drugs remains a substantial hazard for patients at increased risk because it is difficult to promptly recognize; consequently, the proper treatment may be delayed. In addition, the lack of specific molecular markers for confirmation of anaphylaxis impedes accurate diagnosis. The unreported financial burden resulting from perioperative anaphylaxis may be unknown but substantial; food-induced anaphylaxis costs were more than $500 million in 2007.

Pathophysiologic Process
• Types of Allergic Reactions. Type I allergic hypersensitivity reactions resulting in anaphylaxis are now defined as immunoglobulin E (IgE)-triggered and non–IgE-triggered (previously known as anaphylactoid) reactions. Types II, III, and IV reactions do not result in anaphylaxis (Figure 1). Type I IgE-mediated anaphylaxis occurs on subsequent exposure after a patient is sensitized to an antigen. The production of an antigen-specific IgE is critical to eliciting an anaphylactic response. On reexposure, the antigenic protein binds to IgE antibodies on the high-affinity receptor for IgE (FcεRI) on the cell walls of mast cells and basophils. Multivalent allergens need to cross-link with at least 2 IgE receptor sites on...
the surface of the cell membrane to induce the release of inflammatory mediators.\(^8\) Allergen activation causes the eruption of potent preformed and newly generated inflammatory mediators from mast cells and basophils (Figure 2).\(^3\)\(^9\)\(^\text{-}12\)

Type I non-IgE immunologic reactions can occur with the first exposure to the antigen and can be indistinguishable from IgE-mediated responses.\(^9\) Nonimmunologic mechanisms may be idiopathic or may result from a combination of mechanisms. Non-IgE reactions may directly trigger the release of histamine, may occur in response to complement or bradylkinin activation, or can be mediated by an IgG antigen (see Figure 2).\(^3\)\(^9\)\(^\text{-}12\) In an 8-year survey of surgical patients who experienced anaphylaxis, IgE-mediated reactions were more frequent (n = 1,816 [72.2%]) and severe (grade 3; n = 1,092; [60%]) than non-IgE reactions, which occurred less frequently (n = 700; [27.8%]) and were milder (grade 1; n = 372; [53%]).\(^13\)

- **Mast Cells and Basophils.** Although mast cells are present in all tissues, basophils circulate in the vasculature. Mast cells are found within most organs and tissues, especially in the heart, vasculature, respiratory and gastrointestinal tracts, and integument. The release of cell mediators is controlled by calcium channel receptors. Mast cells and basophils have similar receptors and functions: to respond to signals of innate and adaptive immunity and to release inflammatory mediators, but the role of basophils has not been defined in human anaphylaxis.\(^8\)

The early phase of an allergic reaction that induces mast cell degranulation may be followed by a late phase reaction with the release of cytokines that can interact with T-helper type 2 cells. In turn, cytokines such as interleukin 4 (IL-4) stimulate B cells to generate IgE and further stimulate mast cells and eosinophils.\(^14\) Lipids, free radicals, and/or inflammatory proteins and enzymes also regulate the innate immune response. The cascading complement system \(C_{1q}-C_{3b}\) directly activates the release of mediators through non-IgE mechanisms.\(^11\)

Allergic sensitization occurs when T lymphocytes are signaled by an antigen-presenting cell such as dendritic cells in the lymphatic system and then interact with B cells to induce IgE production. The B lymphocytes develop into plasma cells that secrete immunoglobulin antibodies such as IgG or IgE or memory cells with receptors that remember antigens. Because gene segments encode the formation of hundreds of allergen-specific B and T cells, millions of different receptors can develop with long-lasting memory.\(^15\)

Inflammatory Mediators

Inflammatory mediators released from mast cells and basophils such as histamine, proteases (among which is tryptase), leukotrienes, and prostaglandins elicit immediate symptoms of an allergic reaction such as pruritis, wheezing, or hypotension, and can induce cardiovascular collapse (Table 1).\(^3\)\(^8\)\(^9\)\(^\text{-}12\) The inflammatory mediators released from cardiac mast cells such as cysteinyl leukotrienes and prostaglandins decrease myocardial perfusion and contractility. Platelet-activating factor can constrict the coronary arteries, decrease coronary perfusion and contractility, and can contribute to coronary plaque rupture. Furthermore, cardiac mast cells can release chymase and carboxypeptidase, which activate the renin-angiotensin system.\(^16\)

Histaminergic System

Four types of histamine (H) receptors are distributed throughout the body. The H\(_4\) receptors are found in the innervations of the vasculature and cells of the blood, lung, liver, spleen, and gut; stimulation of the H\(_4\) receptors precipitates inflammation. The central nervous system is regulated by H\(_1\), H\(_2\), and H\(_3\) receptors. The H\(_3\) neurons in the tuberomamillary nucleus of the hypothalamus control neurotransmitters. The release of histamine is modulated by feedback from the H\(_3\) autoreceptors and from muscarinic, \(\alpha_\text{adrenergic, and peptidergic receptors. The tuberomamillary nucleus controls the release of acetylcholine and other neurotransmitters. This hypothalamic center is regulated by H\(_3\) autoreceptors that are inhibited by histamine. Inflammatory mediators released by tissues stimulate the afferent sensory fibers to the central nervous system, which causes the efferent vagus nerve release of acetylcholine. At the parasympathetic ganglion via autoinhibitory mechanisms of the postganglionic nerves, the nicotinic or muscarinic receptors release acetylcholine.\(^14\) Stimulation of the H\(_3\) receptors of the presynaptic terminals of sympathetic nerves inhibits epinephrine release from the adrenals, heart, and the peripheral vasculature.\(^3\)

The H\(_2\) receptors regulate cognitive brain function and the function of the gastric and immune systems. The H\(_2\) receptors in the gut stimulate proton pump secretion of gastric acid. The H\(_2\) receptors are distributed widely throughout the entire body and nervous system. The release of histamine stimulates the H\(_2\) receptors of smooth muscle, causing constriction of the bronchi and
vasodilation. Activation of the H₁ receptors in the coronary vasculature may precipitate dysrhythmias, myocardial ischemia, cardiac depression, hypotension, shock, and cardiac arrest.

Clinical Presentation

- **Symptoms.** Surgical patients experiencing anaphylaxis may have early cutaneous symptoms such as pruritis, flushing, erythema, urticaria, or angioedema. Cutaneous signs can be followed by respiratory, gastrointestinal, or cardiovascular symptoms with hypotension and organ dysfunction. A systemic allergic response can quickly progress to respiratory problems with rhinorrhea, shortness of breath, cough, chest or throat tightness, wheezing, hypoxia, hypercarbia, and increased peak airway pressure. An allergic reaction during anesthesia can suddenly occur with cardiovascular collapse, resulting in hypotension, tachycardia, dysrhythmias, shock, or

Figure 2. Physiologic Pathways to Type I Hypersensitivity Reactions

Abbreviations: Ig, immunoglobulin; PAF, platelet-activating factor.
death. An allergic reaction can cause acute coronary spasm or myocardial infarction (Kounis syndrome). Gastrointestinal distress (nausea, vomiting, diarrhea, abdominal pain, or incontinence) and neurologic symptoms (headache, anxiety, diaphoresis, presyncope, confusion, unconsciousness, or seizures) may be associated with inadequate tissue perfusion due to hypotension and hypoxia. Anaphylaxis can also result in decreased renal output with acute tubular necrosis or disseminated intravascular coagulation.

Anaphylaxis Severity Scale
The severity of anaphylactic symptoms is rated by using the Ring and Messmer severity scale (Table 2). Mild grade I reactions show cutaneous or mucosal signs. A moderate grade II reaction can result in multiorgan involvement with possible cutaneous signs and cardiovascular, respiratory, and gastrointestinal symptoms. Grades III and IV reactions may be life threatening. A severe grade III systemic reaction manifests with cardiovascular collapse and profound hypotension leading to inadequate tissue perfusion and arrhythmias; bronchospasm and hypoxia (SaO2 ≤ 92) are common; neurologic symptoms (confusion or unconsciousness) may develop; and gastrointestinal distress or incontinence may occur. Death can rapidly occur after the sudden onset of a serious grade IV reaction. A critical grade IV reaction manifests as pulseless electrical activity or cardiac arrest.

Risk Factors for Anaphylaxis
• Female Sex. In Spain, a 5-year study of anesthetic hypersensitivity reactions reported a male-female ratio of 2:3. Anaphylaxis to sodium thiopental is 3 times more likely to occur in females. A patient with previous exposure to cosmetics may subsequently become sensitized to haptenic compounds that initiate the development of antibodies predisposing sensitization to anesthesia drugs.
• Older Age and Infirmity. Anaphylaxis is more common and severe in older patients who may have chronic pulmonary or cardiovascular disease. Patients with an upper respiratory infection may have a worsened outcome if anaphylaxis suddenly occurs. Although people with asthma are not at increased risk of hypersensitivity reactions, they are at higher risk of death if anaphylaxis occurs.
• Food Allergy. In a survey of surgical patients who experienced anaphylaxis, patients who reported food intolerance more frequently had IgE-mediated reactions (8.49 vs 3.64; P < .0001). Patients with food allergies may have decreased levels of enzymes that degrade platelet-activating factor, increasing the risk of anaphylaxis. A gelatin food allergy may sensitize patients to colloid volume expanders, resulting in a reaction. However, propofol may be derived from egg lecithin, and no strong evidence of cross-reactivity of food allergens with propofol exists. The main allergen of egg is ovalbumin (found in the egg white), and the lecithin in propofol is derived from the egg yolk protein, which may explain the low incidence of propofol allergy. Also, the soy and peanut oils in propofol are refined to eliminate allergenic proteins. Patients with food allergies to fruits (such as banana, pear, kiwi, fig, mango, passion fruit, and papaya), nuts (such as chestnuts, hazelnuts, walnuts, or peanuts), and avocado have been associated with latex cross-sensitivity.
• Latex Allergy. Latex has been a common cause of anaphylaxis.
of perioperative anaphylaxis for more than 2 decades, although the incidence is decreasing. Latex gloves are the most common trigger. Of the surveyed patients experiencing latex anaphylaxis, a significant association with a history of atopy, asthma, or food intolerance was found (P < .0001). However, atopic patients or patients with an allergy history are not considered at risk for anaphylaxis if they are not exposed to the trigger. But, atopic healthcare workers are at an increased risk of latex allergy. Patients who have frequent multiple surgeries with exposure to latex products (such as for spina bifida) and healthcare workers may be at higher risk of anaphylaxis due to sensitization to latex. Patients who are allergic to latex should be scheduled for the first case of the day with all latex products removed from the room. Latex may be considered the triggering agent if the causative agent of a hypersensitivity reaction cannot be identified.

- **Cardiovascular Disease.** Patients with ischemic heart disease or dilated cardiomyopathy may have severe allergic reactions because of a greater density of myocardial mast cells. Patients undergoing cardiac surgery are at risk of anaphylaxis because they receive multiple drugs, polypeptides (such as aprotinin, latex, or protamine), blood, and volume expanders. Patients with cardiac conduction defects, increased vagal tone, or taking sympatholytic medications may not have tachycardia if anaphylaxis occurs. In addition, surgical patients taking β-adrenergic receptor antagonists (β-blockers) may have an inadequate response to treatment for anaphylaxis. Administration of β-blockers can predispose patients to bronchospasm or hypotension and bradycardia due to decreased cardiac contractility. Patients taking β-blockers can become severely hypertensive when epinephrine is administered because of unopposed α-adrenergic tone and reflex vagotonic effects. Furthermore, people who are taking angiotensin-converting enzyme inhibitors may also be less responsive to epinephrine. Patients taking angiotensin-converting enzyme inhibitors may have a substantially increased severity of allergic reactions. An increased serum bradykinin level due to low serum angiotensin-converting enzyme levels and decreased platelet-activating factor acetylhydrolase levels may increase the risk of anaphylaxis. Patients taking angiotensin II blockers may also be resistant to epinephrine.

- **Previous Anaphylaxis.** A history of perioperative anaphylaxis is the greatest risk factor for anesthetic-induced anaphylaxis. Patients who have reported urticaria or angioedema during anesthesia are at higher risk for another reaction. A family history of anesthetic allergy or multiple drug allergy syndromes may also indicate the potential for hypersensitivity.

- **Mast Cell Diseases.** Patients with mastocytosis or clonal mast cell diseases can have exaggerated release of histamine, leukotrienes, and prostaglandins during anesthesia. Patients with diseases such as hereditary or acquired angioedema that cause increased release of inflammatory mediators may also be sensitive to anesthetic. The patients are at risk for the development of severe angioedema during anesthesia and surgery due to an increased bradykinin level. According to Castells, director of the Allergy Immunology Training Program, Harvard Medical School, Boston, Massachusetts:

> Mastocytosis patients should receive anti-H1 and [anti-]H2 histamine receptor blockers, steroids, and leukotriene blockers preoperatively. One protocol includes prednisolone.

<table>
<thead>
<tr>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Grade IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous</td>
<td>Cutaneous</td>
<td>Cardiovascular</td>
<td>Cardiovascular</td>
</tr>
<tr>
<td>Erythema</td>
<td>Grade I signs</td>
<td>Grade II signs plus</td>
<td>Pulseless electrical activity</td>
</tr>
<tr>
<td>Pruritis</td>
<td>Cardiovascular</td>
<td>Cardiovascular collapse</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>Urticaria</td>
<td>Hypotension</td>
<td>Profound hypotension</td>
<td>Death</td>
</tr>
<tr>
<td>Angioedema</td>
<td>Tachycardia</td>
<td>Bradycardia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presyncope</td>
<td>Dysrhythmia</td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>Respiratory</td>
<td>Gastrointestinal</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>Bronchospasm</td>
<td>Nausea</td>
<td>Grade II signs plus</td>
</tr>
<tr>
<td>Wheezing</td>
<td>Hypoxia (SaO<sub>2</sub> < 92%)</td>
<td>Vomiting</td>
<td>Incontinence</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Gastrointestinal</td>
<td>Neurologic</td>
<td>Neurologic</td>
</tr>
<tr>
<td>Nausea</td>
<td>Grade II signs plus</td>
<td>Confused</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>Incontinence</td>
<td>Unconscious</td>
<td></td>
</tr>
</tbody>
</table>
medium should be administered and an ultrasound or contrast media, a lower osmolarity, nonionic contrast of vasoconstriction, which may impede recognition of urticaria or angioedema because of the rapid onset severe perioperative anaphylaxis may not always manifest in clinical manifestations and severity during a perioperative allergic reaction. A patient’s subjective symptoms of anaphylaxis such as itching, nausea, abdominal pain, confusion, and shortness of breath may be masked by unconsciousness or sedation of anesthesia and analgesia. In addition, the common early cutaneous signs such as urticaria cannot always be viewed because patients are covered by drapes during surgery. However, severe perioperative anaphylaxis may not always manifest urticaria or angioedema because of the rapid onset of vasoconstriction, which may impede recognition of cutaneous signs. Most commonly during an anesthetic, anaphylaxis initially manifests with cardiac arrest and bronchospasm, resulting in oxygen desaturation from decreased inspired tidal volume. However, anesthetic-induced anaphylaxis can sometimes occur without hypotension and bronchospasm. Tachycardia can be followed by bradycardia or cardiac arrest, probably due to the Bezold-Jarisch cardioinhibitory reflex originating in sensory receptors in the inferoposterior left ventricular wall. Paradoxical bradycardia due to massive hypovolemia occurs in approximately 10% of severe cases.

Impediments to the Recognition of Anaphylaxis

Triggers. The anesthetic technique should minimize the risk of hypersensitivity and exposure of high-risk patients to their triggers of anaphylaxis. A patient who has had a previous reaction to a drug should not receive the drug again except during a desensitization process.

Substitutes should be used if a patient has an allergy to latex or a drug such as an antibiotic or a nonsteroidal anti-inflammatory drug. Although a slow rate of intravenous (IV) administration may prevent a more severe allergic reaction to a drug by minimizing the administered dose of an allergen, a test dose will not prevent anaphylaxis. If a test dose is necessary, wait at least 20 minutes after a small amount is given before administering a drug to a highly allergic patient. The risk of an allergic reaction may be lowered by avoiding the use of muscle relaxants during general anesthesia and using an alternative to intubation such as a laryngeal mask airway. Regional techniques are preferred over general anesthesia for high-risk patients to minimize the use of drugs that are potential triggers.

If a patient has had a previous reaction to intravenous contrast media, a lower osmolarity, nonionic contrast medium should be administered and an ultrasound or magnetic resonance imaging may be more appropriate.

Anesthetic Pharmacology. The symptoms of anaphylaxis may be camouflaged during anesthesia because of the delivery of multiple anesthetic drugs administered in a short time during induction. Although cardiovascular instability is the most important sign of perioperative hypersensitivity, the rapid administration of IV anesthetic drugs can also cause profound cardiovascular changes. In addition, surgical patients may more commonly have a rapid onset of anaphylaxis and more severe symptoms because the triggering agent is a potent anesthetic drug administered by the IV route or by contact with the mucous membranes. Although prior sensitization, not the drug dose, determines the severity of response and a minute amount of any drug can provoke a reaction, a large dose of the allergen rapidly administered by the IV route can exacerbate severe anaphylaxis symptoms.

Differential Diagnoses. The cardiovascular symptoms of an allergenic reaction may be misdiagnosed as anesthetic overdose, dysrhythmias, hypovolemia or hemorrhage, gas embolism, vasovagal reaction, pericardial tamponade, and septic or cardiogenic shock. Rapid IV administration of vancomycin may cause flushing (red man syndrome) and symptoms similar to those of anaphylaxis. Allergic respiratory symptoms may mimic postextubation stridor, asthma, pulmonary embolism or edema, and pneumothorax.
Intraoperative Management

- **Perioperative Agents as Triggers**
 - **Induction Drugs.** Most reactions to anesthetic induction agents are due to the direct release of histamine, especially when the drugs are administered with muscle relaxants. Although patients who are allergic to penothal may have cross-reactions to other barbiturates, anaphylaxis to propofol is rare. There is “no role to contraindicate propofol in egg-allergic, soy-allergic or peanut-allergic patients.” However, the administration of propofol to patients with a documented history of true anaphylaxis to eggs is controversial.

 - **Muscle Relaxants.** Preoperative benzodiazepines are indicated for highly allergic patients because stress can lead to dermal mast cell degranulation. Anaphylaxis to etomidate is also extremely rare. Furthermore, induction with ketamine or midazolam rarely elicits an allergic reaction. Preoperative benzodiazepines are indicated highly allergic patients because stress can lead to mast cell degranulation. Anaphylaxis to etomidate is also extremely rare. Furthermore, induction with ketamine or midazolam rarely elicits an allergic reaction.

 - **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

- **Fluids and Blood.** Blood products can cause immunologic and nonimmunologic reactions during an anesthetic. Blood products expose patients to antigens that can cause anaphylaxis, hemolytic transfusion reactions, and transfusion-related acute lung injury. However, hydroxyethyl starch, albumin, dextran products, and gelatins used as plasma expanders have a low risk of allergic reaction.

- **Antibiotics.** In the general population, the most common triggers for anaphylaxis are antibiotics (especially β-lactam) and nonsteroidal anti-inflammatory drugs. Cephalosporins, vancomycin, and quinolone antibiotics and irrigation with bacitracin or rifamycin have also elicited hypersensitivity reactions. Rare cross-reactive allergic reactions may occur with penicillin, amoxicillin, and first-generation cephalosporins but not with second- or third-generation cephalosporins.

- **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

 - **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

- **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

- **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

- **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

- **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

 - **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.

 - **Other Drugs.** The incidence of allergic reactions to heparin has increased, especially if the heparin is contaminated. After heparin administration, an IgG antibody may form, predisposing the patient to thrombocytopenia and/or allergic reactions. Hypersensitivity reactions to protamine may be less likely to be caused by direct histamine release or through IgE or IgG antibodies and the activation of complement. High-osmolar iodinated ionic contrast media precipitate an allergic reaction more often than do low-osmolar, nonionic contrast media. Although aprotinin is no longer marketed, tissue sealants or fibrin glues may contain aprotinin that can trigger anaphylaxis.
onset of symptoms.27 After IV drug administration, anaphylaxis usually begins within 5 to 10 minutes, but it can occur as quickly as within a few seconds after exposure to an antigen.22 Most often, a reaction occurs immediately after IV induction of anesthesia, although it may occur at any time. Anaphylaxis may also occur after topical, mucosal, or intra-articular routes of antigen exposure.28 The latex allergen is absorbed more slowly through the skin and mucosa; the symptoms of latex hypersensitivity may be delayed by 30 minutes after contact.29

If anaphylaxis is suspected, a rapid assessment for possible causes of the abrupt symptoms should be determined to rule out other diagnoses. For diagnostic purposes, the timing of symptoms should be noted in relation to the previous drugs administered.12 Whether a drug or latex is causing the allergic reaction, the trigger should be quickly removed from patient contact and help sought.27 The administration of antibiotics and blood products should be stopped, anesthetic administration discontinued, and the surgery terminated.28

- **Epinephrine.** Epinephrine is the mainstay of treatment for anaphylaxis. It is preferred because the α_1 effect of epinephrine constricts the peripheral vasculature to support blood pressure; in addition, its β_2 effect causes bronchodilation.3 Epinephrine also inhibits the cellular release of the chemical mediators of anaphylaxis to suspend the allergic reaction and stop vascular dilation. Delayed epinephrine treatment may be associated with worsened outcomes.12 If no IV line has been inserted, epinephrine can be injected intramuscularly in the vastus lateralis, or, in patients with laryngeal edema, it can be administered by nebulization or through an endotracheal tube.1 The dose of epinephrine should be titrated according to the severity of the reaction. Patients with mild reactions (grade I) may need little to no treatment, whereas patients with grade II through V reactions may need escalating doses of epinephrine (see Figure 4) (M. C. Castells, MD, PhD, personal communication, March 26, 2011).2,26,27 High-dose epinephrine may be needed to treat pulseless electrical activity. If bradycardia occurs, the patient may also need to be treated with atropine or atrial or ventricular pacing.10 However, if bradycardia is treated without volume expansion, atropine administration may cause cardiac arrest. When the ventricle is empty because of decreased preload from massive hypovolemia, bradycardia is a physiologic compensation to increase ventricular filling time. Atropine causes pharmacologic opposition of the paradoxical cardioinhibitory reflex that elicits bradycardia; therefore, volume replacement and epinephrine are indicated instead of atropine for bradycardic hypotension during anaphylaxis.28

- **Antihistamines.** Antihistamines are the second line of anaphylaxis treatment but should never be administered as an epinephrine substitute. Antihistamines—such

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine (titrated to severity of symptoms)</td>
<td>Adult, IV/IM, 1:1,000, 0.1-0.3 mg (in 10 mL NS IV), up to 1-3 mg every 3-5 min; infusion IV, 1 mg (1 mL) of 1:10,000 in 250 mL NS at 2-4 µg/min up to 10 µg/min; endotracheal, 2.25 mg in 10 mL; pediatric, IV, 0.1 µg/kg/min</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>Adult, IV, 1-2 U initially for hypotension; 40 U IV for cardiac arrest</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Adult, infusion IV, 400 mg in 500 mL NS at 2-20 mg/kg/min</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>Adult, bolus IV, 0.1-1 mg (maximum) repeated every 10-15 min; infusion IV, 40 mg diluted in 250 mL NS—0.1-0.18 mg/min (100-180 µg/min) titrate to effect for hypotension</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>Adult, infusion IV, 0.05 µg/kg/min or 2-4 µg/min</td>
</tr>
<tr>
<td>Methylen blue</td>
<td>Adult, bolus IV, 0.5-2 mg/kg; infusion IV, 0.5 mg/kg/h</td>
</tr>
<tr>
<td>Atropine</td>
<td>Adult, bolus IV, 0.4-1 mg</td>
</tr>
<tr>
<td>Albuterol</td>
<td>Adult, nebulized, 2.5-5 mg in 3 mL NS; bolus IV, 100-200 µg</td>
</tr>
<tr>
<td>Ipratropium bromide</td>
<td>Adult, nebulized, 500 µg (1 unit-dose vial) in 2.5 mL NS</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>Adult, subcutaneous, 250-500 µg</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>Adult, bolus IV/IM, 120 mg (0.5-1 mg/kg) followed by 0.8 mg/kg every 4-6 h</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>Adult, bolus IV, 0.5-1 mg/kg IV initially, then 2.5 mg/kg every 4-6 h</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>Adult, IV/IM/orally, 1-2 mg/kg or 25-50 mg; child younger than 12 y, 12.5-25 mg</td>
</tr>
<tr>
<td>Hydroxyzine</td>
<td>Adult, IV/IM, 25-100 mg; orally, 25 mg every 2-4 h; pediatric, 12.5-25 mg</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>Adult, IV/IM, 1 mg/kg (maximum dose, 50 mg); pediatric, IV, 12.5-50 mg</td>
</tr>
<tr>
<td>Glucagon</td>
<td>Adult, bolus IV, 1-5 mg or 20-30 µg/kg; infusion IV, 5-15 µg/min; pediatric, IV, 20-30 µg/kg, up to 1 mg over 5 minutes, then 5-15 µg/min</td>
</tr>
</tbody>
</table>

Table 3. Pharmacologic Treatment of Anaphylaxis

Abbreviations: IV, intravenously; IM, intramuscularly; and NS, normal saline.
Figure 4. Treatment Strategy for Anesthetic-Induced Anaphylaxis

Abbreviations: BP, blood pressure; HR, heart rate; ↑, increased; ↓, decreased; ↑↓, increased or decreased; →, proceed to administration; GI, gastrointestinal; PEA, pulseless electrical activity; IV, intravenous, intravenously, or intravenous line; ECG, electrocardiogram; ABG, arterial blood gases; SaO₂, oxygen saturation; CPR, cardiopulmonary resuscitation; ACLS, advanced cardiac life support; IM, intramuscularly; Q, every; H, histamine; NS, normal saline; and ICU, intensive care unit.

Hydroxyethyl starch (Hetastarch, Teva Parenteral Medicines Inc., Irvine, CA); MedicAlert (MedicAlert Foundation, Turlock, California). (M. C. Castells, personal communication, March 26, 2011.)
as diphenhydramine and hydroxyzine (H₁ antagonists) and ranitidine and cimetidine (H₂ antagonists)—should be given early and are superior when given in combination than when given alone. An H₂ antagonist should also be administered early in the presence of hypotension. However, after cardiovascular collapse, H₁ blockade is controversial.

- **Bronchodilators.** The β₂-agonist drugs albuterol and terbutaline and the anticholinergic ipratropium bromide are indicated to treat bronchospasm. Any patient with hypoxemia or myocardial dysfunction or who requires epinephrine or β-agonist treatment should be given 100% oxygen. Pulse oximetry and an arterial line should be monitored for hypoxic or hypotensive patients. The patient’s airway should be maintained and intubated, if necessary. Extubation should be delayed in patients with airway edema, so admission to an intensive care unit and use of a ventilator should be anticipated. The symptoms of a severe reaction can continue for up to 32 hours, despite treatment. After the reaction has subsided, symptoms of a severe reaction can continue for up to 32 hours. Up to 23% of patients who experience anaphylaxis have biphasic responses with repeated symptoms, with onset usually in 10 hours.

- **Corticosteroids.** Although no consensus exists for the use of corticosteroids or histamine antagonists for anaphylaxis, histamine blockade and glucocorticosteroids may be indicated to treat airway edema and hives. Corticosteroids should not be given before or instead of epinephrine. Hydrocortisone is preferred because it has a faster onset of action, although methylprednisolone may also be given for anaphylaxis. Within the first few hours of a reaction, glucocorticoids may help prevent a worsened or prolonged anaphylactic episode or late recurrence, but they do not help in the acute setting. Preventing prophyaxis in surgical patients is an “elusive ideal” because of its episodic rarity and unpredictability, multiple triggering mechanisms, and difficulty determining allergen sensitization and subsequent risk of anaphylaxis. However, preoperative glucocorticoids and antihistamines may decrease the recurrence of anaphylaxis in patients with previous idiopathic anaphylaxis or a reaction to radiographic contrast.

- **Volume and Vasopressors.** Because of the release of vasoactive mediators during anaphylaxis, vasodilation and profound hypotension may quickly occur. The altered vascular permeability can transfer 50% of the intravascular volume into the extravascular tissues in 10 minutes. Two large-bore IV lines should be opened wide to give a fluid bolus. Normal saline should be infused, 5 to 10 mL/kg IV in the first 5 minutes, up to 30 mL/kg, followed by colloids, preferably IV hydroxyethyl starch (Hetastarch, Teva Parenteral Medicines Inc, Irvine, California), 500 mL. The Trendelenburg position slows the hemodynamic compromise. Death can occur if the patient is positioned upright. Vasopressor infusions such as epinephrine, phenylephrine, dopamine, or norepinephrine may also be indicated to treat hypotension (see Table 3).

For patients in anaphylactic shock due to vasodilation who are unresponsive to epinephrine, arginine vasopressin (AVP) is the preferred drug. During anaphylaxis, α-adrenergic compensation may be ineffective because anaphylaxis has multiple mechanisms for vasodilation, such as excess nitric oxide synthesis, and metabolic acidosis causes vasodilation because it activates vascular smooth muscle potassium channels. Vasopressin blocks numerous mediators and signaling pathways that contribute to vasodilation such as excess nitric oxide synthesis, which causes vascular relaxation and the activation of vascular potassium channels. In addition, AVP inhibits the receptors that control vasodilation. Vasopressin may be effective for catecholamine failure during anaphylaxis because its vasoconstrictive effects are mediated by nonadrenergic vasopressin-1 vascular receptors. Vasopressin has an additive effect with other vasopressors. However, if AVP is given before epinephrine or in high doses, it may have adverse effects. Vasopressin is a superior treatment to methylene blue for anaphylaxis. Nevertheless, methylene blue has been effective for nonresponsive anaphylaxis because it also interferes with nitric oxide relaxation of vasculature.

- **Glucagon.** In addition to vasopressin, glucagon may be indicated for the treatment of hypotension and bronchospasm for patients taking β-blockers who are unresponsive to epinephrine. Glucagon is an effective antidote because it directly activates adenyl cyclase, precluding β-receptors. Whether or not treatment requires glucagon, a prolonged resuscitation for refractory anaphylaxis is recommended because a good outcome is likely.

Laboratory Testing for Anaphylaxis

Laboratory tests are valuable in the diagnosis of anaphylaxis, although no test is a specific and sensitive marker for an allergic hypersensitivity reaction. Detection of the causative allergen is based on retrospective analysis of the clinical manifestations and timing of the onset of symptoms (such as hypotension) after the administration of a trigger, the measurement of tryptase levels, and the severity and symptoms of the reaction and the epinephrine dose needed to effectively treat the reaction.

- **Preoperative Testing.** Before surgery, patients with mast cell disease need proper evaluation and challenge tests to determine which drugs are best tolerated. However, skin testing should not be used for preoperative screening without a clinical history of hypersensitivity (M. C. Castells, MD, PhD, personal communication, March 26, 2011).

- **Intraoperative Testing.** If anaphylaxis is suspected intraoperatively, serum markers of mast cell activation...
should be analyzed. Tryptase confirms an immune-mediated reaction because it is released by mast cells and basophils. Biological evidence of anaphylaxis includes a total tryptase and β-tryptase level within 30 to 120 minutes after the onset of symptoms. A baseline total tryptase level should be obtained within 24 hours. Because histamine is degraded very quickly, a serum histamine level is not a reliable marker. A 24-hour urine collection for histamine and N-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic. Serum-specific IgE assays may be useful for histamine and β-methyl histamine urine levels may be diagnostic.

• Postoperative Testing. After anaphylaxis, a detailed record of the events, drugs administered, and laboratory test results must be recorded for postoperative consultation and diagnostic purposes. An evaluation by an allergist-immunologist is necessary to prevent future reactions through diagnosis of the triggering IgE antibody. Following an episode of anaphylaxis, allergy testing may be needed for high-risk patients to confirm the trigger; skin-prick tests, allergen-specific serum IgE levels, and allergen challenge tests may be ordered to verify the trigger. Allergological evidence based on review of the clinical history guides the skin testing to identify the triggering agent and to determine the mechanisms precipitating the reaction. Skin testing by prick or intradermal injection of a dilute concentration of the allergen is recommended postoperatively to confirm the allergen. Currently, skin tests are the most reliable method to determine the trigger and whether the reaction was IgE-mediated and to direct future safe administration of anesthetics. However, the sensitivity and specificity of skin tests are not perfect. After anaphylaxis, systemic depletion of mast cell mediators precludes skin testing for 4 to 6 weeks.

A commercial IgE test (quaternary ammonium morphine) with 84% sensitivity may be diagnostic of NMBA allergy in conjunction with skin tests. Other novel tests to assess drug allergy include basophil activation tests, radioallergosorbent tests, Immuno-Cap (Quest Diagnostics, Madison, New Jersey), enzyme-linked immunosorbent assay, enzyme-linked immunospot assays, and T-cell proliferation tests. Once the allergen is confirmed, the patient should be provided with a letter to document the reaction and the potential causative agent. The patient should obtain a MedicAlert (MedicAlert Foundation, Turlock, California) bracelet for identification of the allergen. Desensitization is possible for highly allergic patients who have no other options, but with a history of allergy to NMBA, patients can remain sensitive for 30 years.

Conclusion
Anaphylaxis is a major anesthetic challenge that increases the morbidity and mortality of surgical patients. Although anaphylaxis is rare, it can be fatal, even in healthy patients. Preoperative assessment of patients at risk and recognition of anaphylaxis with prompt treatment are essential for survival. Protocols are needed in anesthesia departments to anticipate an unexpected anaphylactic crisis. Simulator practice drills for anaphylaxis are recommended. Within advanced cardiac life support, specific training, including algorithms for the treatment of anaphylaxis, could ostensibly improve the outcomes of surgical patients at risk for anesthetic-induced hypersensitivity reactions.

REFERENCES

AUTHOR

Carol L. Norred, CRNA, PhD, works clinically as a nurse anesthetist. She currently practices as an independent contractor at hospitals in El Paso, Texas. Dr Norred serves as education chair and member of the Research Committee for The Mastocytosis Society. Email: carolnorred@hotmail.com.

ACKNOWLEDGMENTS

Mariana Castells, MD, PhD, is gratefully acknowledged for her professional expertise and review of this course. Dr Castells is the desensitization director of Brigham and Women’s Medical Center and director of the Allergy-Immunology Training Program, Harvard Medical School, Boston, Massachusetts.